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Consequently 

Using the inequality (m (2). I) Q 11 m (t) I/III II= e ]Iz~, we have 

l--m (2)/e, 2 + t (2) (m (I) -r)) > (s - r)/a 

Using Eq.(2.3) we obtain the required condition c3.8). 
The game can, thus be completed from the initial position z” in a finite 

parameters are connected by relation (3.9). The controls of the pursuers are 
time, if its 
const .ructed as 

in the preceding example. 
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OPTIMAL CONTROL WITtI A FUNCTIONAL AVERAGED ALONG THE TRAJECTORY* 

74.1. PA:&SYZ and V.I. PANASYUK 

A set Of infinite cptimal trajcctcries (IOT) is defined. It is shown that 
in an arbitrary fixed time interval any optimal trajectory of a system for 
a problem. vith fairly large control time (and arbitrary initial conditions: 
can be uniformly app roximated tc some IOT with the desired acc.Jracy. 
Sufficient ccsditicns are presented which ensure the existence of IGT, and 
the structure of the ICT set is investigated, using the rearrangement 
operator. The set of main trajectories is defined, and the correctness 
of that definition is proved, A chain of approximations is obtained: 
IO? approximate optimal trajectcries of finite length, and the main 
trajectories apprcximate t!he IOT. 

The properties cf optical trajectories of considerable length, and of IOT and main 
trajectories ara investigated by solving thle problem of optimal control, with a functional 
averaged along the trajectcry. It is shown that a limit time-averaged value of the quality 
functional on optimal trajectories cf the problems in a finite interval, when its duration 
increases withcut limit, does exist, is independent of the selection of the initial and 
finite conditions of these problems, and is equal to its value on any IOT. For a problem cf 
"optimum in the mean" ccntrcl the exact lower bound of the functional averaged over time does 
not change, if one limits the consideration oniy to periodic modes of the system with all 
possible periods. Tne paper continues investigations carried out in /l-4/. A somewhat 
different aspect of tk,e prOtiler;: cf the asymptotic forms of the optimal trajectories of a 
control system was studied in 15, 6/, ard a number of similar problems was investigated in 
/7-ll/etc. Generalizations to problems with discrete times were considered in /12, 13/. 

1. Formulation of the problem. The following problem of optimal control is 

considered: 
$+r(z, u), uEUCRr; XEXCFP (1.1) 



I(S(-)v U(e), to9 T)=j F(2, u)df-+min; to3 T ==const (1.2) 
‘I 

where the set X is closed and U is compact. The functions f(z, u), F&r, u) are continuous, and 
fb. uf3 in addition, satisfies the following condition: L> 0 and e>O are obtained for 
XEX, such that 11 f (x', u) - ,/ (I", u)II < L II x' - x"II , when x', I" E X, (1 x’ - zII < E, II z” - I\/< E, 
uE u. Here II.11 is the Euclidean norm. Themessurablevectorfunctions u.(t)= Urepresentadmissible 
controls, and the absolutely continuous vector functions r(t) that satisfy almost everywhere 
(1.1) for some admissible control represent the trajectories. The asymptotic properties of 
optimal trajectories are investigated as T&co. 

2. Infinite optimal trajectories. The admissible control u"(1), to Q t < T and any 
of its respective trajectories x"(t), to< t< T are called optimal, if for any other admissible 
control u(f) and any corresponding trajectory z(f), to< f& T that satifies the boundary 
conditions x (to) = z?(f& z(T) =x”(T), the inequality 1 (x (-1, u (*f, to, T) > 1 (x0 (*L m" (-1, to* T) 
is satisfied. The principle of optimality consists in the fact that any part (arc) x0 (0, to < 
.&g tQ E,< T of the optimal trajectory x'(1) is itself an optimal trajectory. 

Definition. in admissible control u0 (f) and some corresponding trajectory x"(t) defined 
on the set J from R of one cf the following types: --oc<t<oo; --oo<tQb; oQfQb; 

aQf<= are called optimal, if for any segment I&, EzlC J the contractions x0 (f),u’(f) on 

fS< E_2 

are the optimal trajectories and control. We calltheoptimal trajectory x"(f), --OQ < 
an infinite optimal trajectory (IOT). /2, 4/. 

3. Passing to the limit over successions of trajectories + We use the follow- 
ing notation: 

q* = (q, qn+l) S Rn+’ 

G* (I) = {q”: q = f fx. u), q,a+ > F (5, u). u E L’) 

Theorem 3.1, For xf X suppose the set G* (x) is convex and the succession of trajec- 

tories 2 (t), -60 ((L< f,< b( ca. k+ CC corresponding to some admissible Uk (f) is uniformly 
convergent to x (1) on la, bl. Then s(t) is the trajectory that corresponds to some admissible 
contrcl u(f), a< t< b that satisfies the ineqality 

I (x (.). u (.). a. h) $ lim I (2’ (.). U* (a)7 4. bf 
K 

(3.1) 

The proof is carried out using the scheme civer, in ,'14! p>.95-104. 
We denote by A (E,x),E> 0 the set of pcints in X reached from I E s ir. exactly the 

time E. Ccrrespcndingly, A f- E,X)C X is the set of pcints fromwhich x is reached in a time 
E. WE say that system (1.1: is pcsitiveiy Cne:etively) 1ocaLly contrcllakif;le along the 
trajectory x(t), a < t< b wtien t = t* z (a. b). if ~lrr E"> (1 can be found for which when 0 < 

E < Eo the inclusion z(t* + e)E Int A (E. x(t*)) hcids, (respectively I (f* - E) E Int A (- E, 
2 (t*))i. we say that the system is contrcllable in the limit on an infinite trejectcry x (6. 
--oo<i<=J, if successions fi:'+ --OO.tir"--+ a3 as k-co are fcund such that the system is 
negatively locally contrcllable on I (.) when t = tk’. and positively locally controllable along 
r (.) when t = fk”. k ;Z; 1. 

Fro- (3.1) and the limit contrcllabi1ity we obtain. 

Thecrem 3.2. Let the set G* (3) be cczvex when xC X , and the continuous function 
2 (t) 5 x, -05 < 1< 00 be on each segment n < r< b is a unifcrz limit of some succession of 
optimai trajectcries, dependent cn lu. bl , Then r(f) is a trajectory. If the system (1.1) 
is additionally controllable on 2 (.). then x(e) is an IOT. 

4. The rearrangement operator II 12, 41. We denote for the compactum DC X the 
topological space C(R, D) of all continuous mappings R + D with topology of uniform con- 
vergence on compacta. For the subset 11°C C (R. D) we define the rearrangement operator 
n (W')C C(R, D) transforming the subsets from C(R, D) into subsets from C(R,D) according 
to the formulae 

and the closure is taken in C(R,D). i.e. the operator n converts W' into the subset from 
C(R, D! obtained by the closure of all possible displacement tp,(.) of all mappings from M“ 
The properties of the rearrangement operator can be verified directly. 

Theorem 4.1. Let W’, Ii’” c C (R. D). Then sn (\I_' ) = n (w’); w’ C n (Ii.‘): nn (K”) = n (Us’); 
n (w) 2 n (w) = n (II-’ !&I iv*); n pv n we) c n (II-) rl n (n-j. 
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Consider some subset I‘C G (R. D) invariant under the rearrangement operator II (I') = 1'. 
and introduce on V a new topology, assuming to be closed those and only those subsets f-'C I‘ 
that U (I-') = I“. We denote the topological space obtained by I'.+. It follows from Theorem 4.1 
that n is an operator of closure. Then by virtue of the Kuratowski theorem/15/we obtain 
that the sets invariant relative to the operator l3 can be investigated using topological 
means. 

Corollary 4.1. The topology of the space I', is correctly defined. 
Let U"C G(R, D) be some set of IOT. Wesaythatthe optimality is invariant under the 

action of U on U", when rI (Ii") consists of IOT. We denote by UDthe set of all IOT lying 
in D, From Theorem 3.2 we obtain the sufficient conditions of invariance of optimality 
relative to fl. 

Corollary 4.2. Let the set G* (s) be convex, and when XED the system is controllable 
in the limit on any trajectory I(~)E D. -00 < t< cp lying in the compactum D. Then for any 
non-empty set Of IOT U;'C C(R, D), U”f p. the optimality is invariant under the action of 
n on W'. If in addition UD# f. then U (UD) = U'D. 

5. The set of main trajectories, For the compactum DC X the set ?%*a"~ &ii. 
which is non-empty and satisfies three conditions: 

1) of approximation: U (u (.)) C U-DC # 2 when TV (*I E U'D, 
2) of closure Il (U‘D') = Mb'. 
3) of minimality:U;?does not contain a proper subset that does satisfy the conditions 

of approximation and closure, will be called the set of main trajectories for IiSn. The correct- 
ness of this definition is confirmed by the following theorem. 

Theorem 5. i. Let the o?tinalitp 13, +,T be invariant under the action of U of U,, 
Then U (It,) = l!i.: the set of main trajectcries U-D" for Il.; exists and is unique. 

Proof. Consider the set U) of ali subsets e = W'C HL that satisfy the conditions of 
approximatian and closure. Then 11, E (r, , and it can be shown that the intersection of a 
finite number of subsetS from Q is, again, an element of CD, i.e. Q has the property c.f finite 
intersection /15/. The equipotential continuity trajectories in the compactum D, and the 
invariance II (W+D) = R-D implies, by Ascoli's theorem the compactness of rVIr From this r IV'- 
f. M“E@ and it is sufficient tc set Wn*= ;, A.'. ii" eat. 

If X is a compactaT, we lise the notation It' = Ut+ II" = UVxc. and simply call If'" the set 
of main trajectories. 

Theorem 5.2. Let X be a ccqact~z,, an? let G* (J' be convex for ;r~ X; for any T> 0 
a trajectory ci duration T, can be fc.2r.d and the Systerr. is, in the limit, controllable on 
any trajectory r(Ij & S. -o(1 < t ( DC, The: t:-.e set W oi :OT is non-eqzty: ii-# 2 and the 
optimality of trajectories is invariant tc the a-, -'ion of U on It': n (U') = U'. The Set Urn 
of main trajectories exists and is cniqie. 

Proof. T‘ne availability cf trajectories of any duration ensures the presence of minimiz- 
ing successions defined on any time intervals. Hence, by virtue of Theorem 3.1 optimal 
trajectcries of arbitrary d-ration also exist. UsingAsccli'stheoren for selecting a succession 
of optimal trajectories definedon asystem of intervals which extends without limit and 
uniformly cn com?acta, converging to some c.zrve z(t)~ X, -DD <~<oo, we obtain by Theorem 3.2. 
that Z(.)E w, whence Wi 25‘ The remainir.; statements follow from Ccrollary 4.2 and Theorem 

5.1. 

6. The chain of approximations. We say that tne set of optimal trajectcries fron 
,Q is closed in the topology of iiniform con'.'ergence on compacth from (-00. 00). if it fOllOWS 
from that r(t) is ar. IO': an2 the vectcr function s(t)= D,--m <t< m in each segment 10. bl 
is the uniform limit cf some ssccession of Optimal trajectcries defined in [a. bl dependent on 

Ia, bl . Theoren, 3.2 provides the sufficient conditions cf such closure. 

Corollary 6.1. Let the set G* (z) be convex when rf x', and system Il.11 be controllable 

at the limit on any trajectory r(t)f D, - 0D <t< 03 from the compacturn D. Then the set of 

optimal trajectories from D is closed in the topology of uniform convergence on compacta from 

(-00, m). 
We denote bY U'D (I,.1:) the set o- f all optimal trajectories r(i)~ D, t, < t < t,, and bY 

UD (tl, 81. 81, tl) the Set of trajectory contractions from UD (tl: ts) on 10,. 8,l C It,, t,l. 

Theorem 6.2. (see /2/ p.6i). Let U'D # z; the set of optimal trajectories from D iS 

closed in the topology of Uniform Convergence on compacta from f-m, m). Then for any 

@,<@, and E > 0 we can indicate I1 and T, such that when t, S T,. te> T, for any 8(*f E- 

UD (tl, 81, 02. '2) we can find an IOT p (.)E UD such that I/J'(l)- (I (f)ll< S for t, <0e, <t .s 

8, Q t*. 
Taking intc acco~~~t. that fromthe closure of the set of optimal trajectories from D their 
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follows the invariance of the optimality relative to the action II on W,, from the condition 
of approximation in the definition of the set of main trajectories the characteristic of 
approximation properties of the main trajectories can be similarly obtained. 

Theorem 6.2. Let W,# ;7 and the set of optimal trajectories from D be closed in the 
topology of uniform convergence on compacta from (-00, 00). Then for any T>O and s>Oan 

hf = M(T,ej can be found that satisfies the following condition: far any optimal trajectory 
r" (1) E D, O< f < M a main trajectory v(*)f 1%'~' and tI are found such that It,, t, i- Tl C [O, 
MI and 11~" (l) - q (f)Ij < E for ( E It,. 1, i- T). 

Theorems 6.1 and 6.2 show that the sets of wnand WD” constitute a chain of approximations: 
ICYI' approximate optimal trajectories of finite duration, while the main trajectories reflect 

the symmetric properties of IOT. 

7. Averaging of the functional along the optimal trajectory. Let us consider 
now the problems of characterizing IOT and main trajectories, using the problem of optimization 
with the functional averaged along the trajectory. Let uo(t) be the optimal control and 

zo (4, t,, Q t < t, f T some optimal trajectory corresponding to it. Then the minimum 1 (Gl (.), 
UfJ (*). i,, t, + T)= min I is reached for it in conformity with the definition of an optimal 
trajectory. The averaged functional is then also minimal 

-&I(Q(.), u0(.), to, to+ Tj=min+I 

because T is a given constant. However our aim is not the investigation of one optimization 
problem for any fixed T, but a complete set of such problems differing by the time T of the 
process and, also, the clarification of the behaviour of optimal trajectories as T+ K. Hence 
letting T-+ DO, we obtain the averaged problem of minimizing the limit 

1,-r 

Iim 
-q 

F(r(f), u (t))dt 4 min 
T-1 

(7.1) 

on some set of admissible controls and trajectories on fin. to-+- T1. By the same token we take 
a (0, I (fi. (0 a 1 < 00, the limit (7.1! is calculated as T+ 00. and then the minimum of that 
limit is sought on the set of admissible controls and trajectories on [to,oc). 

However, this is insufficient for the statement o f the problem of optimal contrcl with 
a functional averaged along the trajectory to be correct and tc be a useful method cf investiga- 
tion. First, the limit (7.1) does not exist for any controls and trajectories, hence the 
question of its existence must be separately considered. Second, the solution of problem (7.1) 
must definitely indicate the trajectory cn which that minimum is reached. At the same time 
one and the same value of limit (7.1) as T-m. if it exists, corresponds to trajectories and 
controis in an infinite time interval differing only in some finite time interval, Hence the 
criterion of optimality !7.1), where a minim.rT is sought on a fairly wide set of trajectories 
and c-ntrols 0 defines not a single trajectory, but a whole set of trajectories and controls 
for which a minimum is attained. To avoid s.uch ambiguity cne has to narrow the set of pairs 
P on which the minimurr (7.1: is s0'ug:C.t. Such narrowing may lead to the existence of the 
limit (7.1) (e.g., if we take Q= R,. where R, is the set of admissible periodic modes). Third, 
the averaged probiem (7.1) must have a soiution. For instance, by narrowing $2 to periodic 
modes 9 = Q,. we obtain the problem cf periodic optimization (PO) whose sclution (optimum cycle), 
if it exists, is uniquely deterrr.ined, except the special cases of optimal cycle non-uniqueness. 
However, the minimum of (7.1) may not be reached. Sim-ltaneously the widening of modes of 51 
to the almost periodic modes Q= R,, /4/ may ensure the existence of a so;.utior.. This shows 
the val-.ae of widening R tc the set cf almost periodic modes. 

8. The standard large variation of the trajectory, We say that the system (1.1: 
is uniformly controllable on compecta DC .X,if and only if, there exists a compactum ICC S 
and a number M>O such that for any two points %. Ql 
hf, I (0) = x0, z (M) = 231 car. be found. 

ED a trajectory z (t) f li,ogt< 

Consider two trajectories r,(t).r (f)f D. 4< t< b, b- 02 2X of which ro(*) is optimal. 
We construct the trajectories 2.1 (1) E' K, a Q t < Q + M, 21 (a) = 20 (a), 21 (a + M) = r (a + M), I? (1)f 
li, b - M 0 t < 6, t* (b - M) = z(b - AI), x2(b) = lo(b). and determine the larger variation 
a< t < b of the trajectory zc(*) by formulae 

Y(t)? 

a+fif<t<b - hf, and y (t) = z1 (t) when b - 
y (t) = x1 (1) when a < 2 Q a i_ M; I/ (1) = z (t) when 

Jf< 2 <b. From the compactness of h' X L‘ and 
the continuity of F&u) it follows that for some X = K(D) the inequalities 

hold. 
By virtue of the optimality I (I,, (a). u, b)< I (y (.), o, b), whence we obtain the basicinequality 
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for the standard large variation 

1 izo (*)* a+ b) d 4N + I(2 (*), a, b) (8.1) 

Let us fix o>o, Let there be some sequence q+m,rk> o, k+ m, and functions 
t,< 1<4 

gk ii)> 
that are Lebesgue swumable. We shall consider the integrals 

f.+% w-b) 
1 

ak=- 
‘k s 

8& lf) fit* fik (6,) = +- “l gk (t) dt 

. ‘k 

Using the Lebesgue integral, we obtain the following statement. 

Lemma 8.1. Let I& (f) I< Mc when k> 1. - co< t<: 05 for some d!f,. Then ek can be 
selected to satisfy the condition @k @k) - ak + 0, f@k, ek + 01 c it& to + ?kl as k+ 00. 

9. The existence Of a unique limit for the functional averaged over optimal 
trajectories. For brevity, we shall write I (z (.), aI, b) instead of I (I (.), u (.), a, b). 

Theorem 9.1. Let sy'stem il.11 be uniformly controllable on the compactum DC X, and 
for any T>O suppose the set EYz(T) of optimal trajectories of duration T lying entirely 
in D is non-empty. Then the limit 

lim +(z3('), 0, T)=Co=Co(D) (9.1) 
7-a 

exists and is independent of the selection of IT (.) E Jib (T). 

Proof. Assuming that the theorem is false, we find sequences sok(+)E &Vn(xk) and J&n (.) m 
wn (T?Gi that satisfy the inequality 

(9.2) 

where Zok (.), xDni (.) CorreSpOnd to hi,‘(.). I+~,(.), while oh_, T,,- & for h, m - w:. We fix m 2 I such 
that ?,&22,?1 and put o= T,. According to Lemma 8.1 6,. x, can be found such that 

i 
t Ifk ($)- ai; I< -i;; for x- > k,,,. Pk if) = F iQ, if). Uek (t)) (9.3) 

By an appropriate seiecticn o f the reference point on trajectories *or(.), we can obtain 
&=O(then the trajectories themselves are defined for --&.<z<T),-~~, and ?k-&> T,). We 
construct a standard large variation of trajectories, taking zeni(li as z0 (L), and setting a= 
Ct,b= T,. Then, by virtue cf iF.1, we obtain 

f (Se_ (,), 0, Fmf f 45-7 1 (I@&. (.), 0, 7,) 

which implies 

7-,'1 (IOn ,(,)> 0, T,.! B T;;,]] (I?~ (.), 0. T,,,+ T;:,'j.l 

and from (9.3), taking into acccunt 6,: = 0, we obtain 

/ T;f (zor (.)ti 0, T,,J -f;'l(q,,(.f, 0, ~$1 I< m-', k>$,, 

It follows from the iaSt tWG iIIequ?ditieS that 

TV!&,,,,. 0, T,f< Tk-‘I(X,k (.). 0, Tk)+ ?242’+ XL-‘, k&k,,, 

my letting m-w here we obtain C"<C', which contradicts (9.2) I 

By the problem of average-optimal contrcl, with the functional averaged along the trajec- 

tory, we mean the problem of minimizing 

lim 
f-o; 

F (r (t), u (t)) dt -, min 49.4) 

on some set Q of admissible controls and trajectories defined for - ce (t< OQ. That the 
lower limit of integration in (9.4) is zero, is immaterial by virtue of Theorem 9.1. Moreaver, 

Theorem 9.1 implies that for any 10'7 lying in the compactum D on which the system is uniformly 
controllable, the limit (9.4) exists and is equal to c,. i.e. is independent of the choice 

of the IOT, 
we denote by S&n the set of all periodic modes z(t), ~tftf of system (1.1) such that the 

cycle z(,) intersects the set D. The method used for Theorem 9.1 enables us to prove the 
following theorem. 

Theorem 9.2. Let system (1.1) be uniformly controllable on the compacturn DC X; n’u (T)f 
0 when T>O. Then the quantity C,defined in Theorem 9.1 satisfies the equation 
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T 

ini lim +s F (t (t), u (t)) dt = c, 
r<.>, u<.)EO,D *- * 

ad, in particular, if I)- X,then all periodic modes appear as qD. 
This equation justifies the part played by the problem of periodic optimization as the 

problem of averaging. It shows that using the periodic mode it is possible to approximate by 
the averaged functional any optimal process of infinite duration - w(t< w,, with a specified 
accuracy. If one considers that the problem of periodic optimization, which is the simplest 
of problems of optimal control with a functional averaged along the trajectory, which has 
such property, and that periodic modes are the simplest to obtain in practice, their part in 
the main asymptotic mode becomes clear 12-4, 13/. 

10. The problem of periodic and almost-periodic optimization (PO and APO) 
as special cases of problems of average-optimal control, The problem of PO may 
be presented in three forms. The first form: determine the periodic trajectory from the set 
WOf IOT. The second form: find the admissible periodic mode 

T 

inf lim +s F@(t), 11 (f)) dt 110.11 
X(.1, U(.&Erin T-s 

0 

the exact lower limit for which would be reached, andthe third form; to minimize the functional 

3 r 
7- 

s 
F(r(t), u(1))&+ min (10.2! 

0 
Uf.L il.). 7 

under conditions of periodicity I(T)= x(O), where t>O is not specified. 

Theorem 10.1. Let X be a compactum and let the system (1.1) be uniformly controllable 
on X. The three statements of the problem; of PO are equivalent. 

Proof. Implication I - 2. If r(.) is a periodic trajectory from W, then according to 
Theorem 9.1 the precise lower limit (10.1) is achieved on 2f.j I as well as on any IOT. 
Implication 2-3. If *it), u(f), --oc<t<m are periodic functions and minimize (lO.l), then 
according to Theorem 9.2 that minimum is equal to c,. Let 7 be the period of the process. We 
set T = kr and obtain 

1 7 
,:7 

y F@(f), u(*))h& 
s c F(f(t), u(t))&-Co as k-53 
0 "0 

From this it follows that the mean value of the functional over the period for q(.i, u(.l 
is equal to C, which according tc Theorex 9.2 is the exact lower bound of (10.2). The implica- 
tion 3-l was proved earlier i/Z/, p.1031. 

Consider two forms of the statement of the problem of PTO. The first form defines the 
almost periodic IOT. The seccnd form: to minimize the averaged functional (9.4! on the set 
of almost periodic trajectories for which the limit (9.4) exists when T-e 0~. NC supplementary 
assumptions are made relative to the controls, except about measurability. If X is a compacturn 
and the system is uniformly controllable on X, then by virtiie of Theorem 9.1 it follows from 
the fact that J(.) is the sclutionoftheproblemofPPOinthe firststatement;if follows that I(.) 
is the solution oftheproblemofPP0 inthe secondformalso. 

11. The problem of PPO for a linear system with a quadratic functional. 
Ass&.ming for the characteristic roots i., of the matrix .4 f R”‘” 

we shall consider the linear system of control 

We denote by 
that are summable 
m). According to 

Re xi < 0. f Q i < n (11.1) 

Liz 
(11.2) 

L,2 the set of periodic vector functions us R’ with all possible 
together with the scalar product of (u(t), u (1)) on any compactum from 

periods 
t-o=, 

(11.1) a single periodic trajectory (11.2) corresponds to each function -_ 
u f-1 E L,’ I We denote by 
of !F&" 

SZSz the set of periodic paii-s r (‘), u(*) E .&I, and by Q, the subset 
consisting of sinusoidal or constant functions, i.e. if r(e), u(a)5 Q,, then all 

components x(t), u(1) are sinusoidal of equal frequencies, or constant. 
Consider the sinusoidal control u. (t) = fu, sin (wt +$r)... ., u, sin (wt +$)l*as w--, 00. Then 

the sinusoidal trajectory which corresponds to it converges uniformly r,(f)+0 with respect 
to t in accordance with !11.1). Hence it is possible to give meaning to the consideration 
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of the pair zS (.).u, (v) of sinusoidal trajectories andcontrolsofinfinite frequency, assuming 
I, (1)~0, and as u, (,) considering u@(f) as o+oo. We denote the set of these pairs of 
infinite frequency by f2,,,. 

We now have the problem of maximizing the averaged functional 

without any assumptions as to the matrices D and G. 
by minimization. The parentheses (., .) denote here 
of S2 on which we seek (11.3), we take the subset of 

Gu)]dt- max (11.3) 

Hence the maximization can be replaced 
a scalar product. As the set of pairs 
all pairs composed from the sums 

u (f)= ‘ZO ui (t); t(t) = 2 zi (t); 
i-0 

d (*), 2 (.) E 52,s u Q,,, 

that satisfy the averaged limit on the control on each entry for given ok 

12. Contraction of the set of admissible pairs. We contract (11.4) to 

r-1 
u(t)q2(t), z(t)=;$(t); u’(.), fi(.)E12E 3 Q,,,. 

(li.4) 

(11.5) 

(12.1: 

Theorem 12.2. The exact upper limits (11.3) in problems (ll.l)-(11.51 and (li.l,, C11.21, 
(11.5) and (1.2.1: are the same. 

Proof. Ccnsider the control 

CJkisia(wi:+$,,); i<k<r; wj#oi when j#i 

tc which corresponds the stable solution (11.2) of the form 

It is ass.lqed that wg_l = 30. The: A'"-' = 0 P fcr 1 < p .5- n. 

S&stit;;tlon cf (12.2’ intc i11.5' yieids 

We put 

(12.2: 

(12.3) 

ci2.4: 

(12.5) 

T 
1 

P i = lilu 7 x s 
[(I' (I), Dr'(t)) + (u'(t), cv' (I))] dl 

T-I 0 

Then because w.#o, for if, WE have fcr (12.21 and (12.3) the optimal criterion (11.3: 

in the form 
N--l 

P(I(., Y), u(., .V)) = z Px’ (12.6) 
+=a 

Considering the re1aticr.s (12.4) and (12.5), tc prove the theorem it is sufficienttoshow 

that instead cf (12.2), it is possible to select a control of the form 

iCk<r (12.71 

oi#Oj when I# i, PuoPur = 0 

(i.e. where [.Y]a= 0 or [IT]* = 0) such ti:at for ~(t. r) that corresponds to (12.7)) the in- 
equality 



N-1 

P(I(., N), uf., N))<P(+(*, er UC., a x Irr’l’= i IC’I’ 
i-0 t4 
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(12.8) 

is correct since the functions trf.)~ L,f can be expanded in a Fourier series, and condition 
(12.8) implies the possibility of reducing the number of harmonics, including the constant, to 
the number of inputs of system (11.2) without violating constraints and without diminishing 
the criterion (11.3). 

The vectors [Ui]*,O( ie;.X'-1 are linearly independent for N>r. Hence we can find 
simultaneously non-zero $@, . . . . &_1 such that 

BaP-Jl +-..+BN_lI~l =o $P ia (12.9) 

It suffices to prove that for X>r we can pass from N harmonics to N-i so as to have 

P(r(., .V), u(., A'))<!'(r(., N-l), u(., N-i)) ‘(12.10) 
N-l 
2 lUi]'= "i'[C']2 

iwi 

Then inequality (12.8) may be obtained from (12.10) by induction. 
If [@If =O, inequality (12.10) is proved. We assume that f@#O when 0g i<N- 1. Then 

by virtue of (12.9) among $i we have positive and negative quantities. To be specific we 

assume BP.. . ., B, > 0, f&+11. . ., f3N_l<0. Adding r scalar equations (12.9), we obtain B,p,o +. . + 

fi+p,N- = 0. Let us calculate two coefficients 

k = (-IL,) p;-’ i . . . + (- BN_,) q-1 
s (- @,_,I p’,-* + . + (- pN_l) q-1 

and assume to be specific that k,< k,. We select f~ = u~ax~~ from 0C.i gv. Assuming that fi= fi, 

Using the formulae 

we change the amplitudes of the harmonics ti. Then 

i.e. the n;;&er of harmonics is reduced by one and 

From the inequality k, Qk s, taking intc account the equality cf the denominators in ki,k,. 
we obtain 

BOPXO?. I + f+Pxv 4 - fl,_,P;*’ - . . - &&‘;-’ 

Then the following criterion corresFcnds to the new control amplitudes: 

which is identical with (i.2.101 apart from the numbering of the harmonics. 
The averaged functional (11.3) of the form 

I=I(U", . . . . UT, ml,..., o,, $1, . . . . $,)- min (12.11) 

Uie COl[G1'* * * a7 U,']? t&i= CO1 [$,v . . ev t&i,] 

corresponds to contrcl in the form of the S'W of harmonics (12.7). Here C'" =0 or V=O, 
i.e. the over-all number of harmonics, including the constant component, does not exceed r, 
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and the constraints (11.5) have the form 

According to (12.12) and (12.7) the regions of variation of u',(ti are compact. All 
values from 0 to 00 are admissible for 0,. Hence condition (11.1) enables us to state the 
following theorem. 

Theorem 12.2. The problem of non-linear programming (12.11), (12.12) has a solution which 
determines the solution of problem (11.2), (11.3), (11.5), (12.1) in the form (12.7), (12.1). 

Corollary 12.1. The problem (ll.l)-(11.5) has a solution that is provided by the 
solution of problem (12.111, (12.12) in the form (12.7), (12.1). 

This shows that when the number of inputs r> 2 andthe frequencies a,,..., o,_,obtainedinthe 
solution of problem (12.11), (12.12) are incommens@able, the solution is obtained in the 
class of almost periodic functions. 

Remark. Problem (ll.l)-(11.5) may be treated as one of maximum 
power transmission to the load with power constraint on each input. 
Besides it is seen that the Theorems 12.1, 12.2 and Corollary 12.1 
hold alsc when functional (11.3) is replaced by the functional 

Fig.1 [(r,Dr)+ (I, Lu)$ (u,Gu)]do - max 

where L is the matrix nj 7 

Example. Consider the problem of supplying maximum power to the resistance R in the 
electric circuit shown in Fig.1, with 

Ip 

and a constraint on the controi provided by the electromotive force e (1) 

We denote the voltage across the capacitor by z, the current by Z, the capacitance by C, 
and we obtain Kirchhcff's second law z+ IR = e. For the capacitance we have 

dr 1 
dt “7” 

from which foilows the differential equaticn 

dz 
a‘i = (e-z) (R(‘)-' 

According to Corollary 12.1 the solution is provided by a single harmonic c=asinof, from 
which i = a(R* + l/ (00~i-"sio (014 qi. It is seen that the maximum of P= oV(LR) is reached when 
0 = 00. This corresponds to the fact that the maxim-um transmission of power to the load, for 
the chain consideredhere,corresponds to frequencies as high as desired. Mathematically, this 
means that r(f)= c1 sin or is considered as the solution when o-cc. The same problem for a 
chain differing from the one in Fig.1 by the addition of an inductance L has a solution .c(i; = 
a sin 01, 0 = (X1-" with the sa..e maximum; power. 
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A GAME OF OPTIMAL PURSUIT OF ONE NON-INERTIAL OBJECT BY 
TWO INERTIAL OBJECTS* 

A.YU. LEVCHENKOV and A.G. PASHKOV 

A game in which one controlled object is pursued by two others is studied. 
The pursuing objects are inertial,‘ and the pursued object is not. The 
duration of the game is fixed. The payoff functional is the distance 
between the pursued object and the closest pursuer at the instant when 
the game ends. An algorithm for determining the payoff function for all 
possible positions is constructed. It is shown that the game space 
consists of several domains in which the payoff is expressed analytically, 
or is determined by solving a certain non-linear equation. Strategies of 
the pursuers which guarantees them a result as close to the game payoff 
as desired are indicated. 

The optimal solution of a game of pursuit when one inertial object 
pursues a non-inertial one was obtained earlier in /l/. T..e present 
paper is related to the investigations reported in /l-10/. 

1. Let the mcticns of the pursuers Pi (r’)(i= 1,2) and of the pursued object E (z) be 
described by the equations 

x1- pi xzi, 
. 

fg- = u;, x2.’ =i xf, z,” = d*, 21’ = VI. 21’ = up (1.1) 

The control vectcrs of the pursuers and the pursued satisfy the constraints 

((ux')' + (u*i)?)l.I &p > 0, (s* + v*Z)< v (1.2) 

The game is studied over the tine interval [to.*). The payoff functional is the distance 
between the pursued object and the nearest pursuer at the instant 1 = 6 that the game ends, 
i.e. 

As a result of the change of variablesyj' = r,'-i @ - t) I:_, (i = i.Z),which means passing 
to considering the centres oc I regions of attainability of the inertial objects, relations 
(l.l)-(1.33 take the form 

yj” = (6-t)Lfj't Yj'(io)=sj'(lo)T(~-ftO)Z~_2(fO) (1.4) 

y" minj]{i1(8)- yt'@))$ S&(6) - f/;((t)folza (1.5) 

At the instant t = 6 the values of p found from (1.31 and (1.5) are identically equal. 
We denote the centres of the attainability regions by pt. For the positions where p,'= p;, 

the payoff of the two-to-one game, denoted by pz', 
to-one game denoted by p". 

is identical with the payoff of the one- 
Henceforth we consider those initial positions for which P,“p P,‘. 

*Prikl.Matem.ifekhan.,49,4,536-547,1985 


