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Consequently

r—s 1 .
(FE-1et) = >

Using the inequality (m(2), z)<m(z))jz]=2}z], we have

(=m (2}fe, 244 (z) (m (2} —2)) > (s — r)/ax
Using Eg.(2.3) we obtain the required condition (3.8).
The game can, thus be completed from the initial position :° in a finite time, if its
parameters are connected by relation {3.9). The controls of the pursuers are constructed as
in the preceding example.
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OPTIMAL CONTROL WITH A FUNCTIONAL AVERAGED ALONG THE TRAJECTORY’

A.I. PANASYUK and V.I. PANASYUK

A set of infinite cptimal trajectories (IOT) is defined. It is shown that
in an arkitrary fixed time interval any optimal trajectory of a system for
a problem with faixly large control time (and arbitrary initial conditions
can be uniformly approximated tc some ICT with the desired accuracy.
sufficient ccnditicns are presented which ensure the existence cof IQ0T, and
the structure of the ICT set is investigated, using the rearrangement
operator. The set of main trajectories is defined, and the correctness

of thet definition is proved, A chain of approximations is cbtained:

IOT approximate optimal trajecteories of finite length, and the main
trajectories apprcximate the IOT.

The properties c¢f optima: trajectories of considerable length, and of IOT and main
trajectories are investigated by solving the problem of optimal control, with a functicnal
averaged along the trajectcry. It is shown that a limit time-averaged value of the quality
functional on optimal trajectories of the problems in a finite interval, when its duration
increases withcut limit, does exist, is independent of the selection of the initial and
finite conditions of these problems, and is egual to its value on any IOT. For a problen cf
"optimum in the mean" contrcl the exact lower bound of the functional averaged over time does
not change, if one limits the consideration only to periodic modes of the system with all
possible periods. The paper continues investigations carried out in /1—4/. A somewhat
different aspect of the problem cf the asymptotic forms of the optimal trajectories of a
control system was studied in /5, 6/, and a number of similar problems was investigated in
/7—11/ etc. Generalizations to problems with discrete times were considered in /12, 13/.

1. Formulation of the problem. The following problem of optimal control is

considered: d
=iz u) vsUCR,; z=XCRk (1.1

*prikl.Matem.lekhan.,49,4,524~535,1985
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r
T(z() u() to T)=S F(z, u)dt— min; ) T ==const (1.2)

L

where the set X is closed and U is compact. The functions f(z, u}), F (z, u) are continuous, and
fl{z, ¥), in addition, satisfies the following condition: L >0 and e >0 are cbtained for

ze X, such that ||[f(z', u)—F(@", W< Ltz —2"]|, wvhen 2", 2" X, |2’ —z|<6¢&, || 27 —z]|<e,
u e U. Here ||| is the Euclidean norm. The measurable vector functions u (f) & Urepresent admissible
controls, and the absolutely continuous vector functions r (f) that satisfy almost everywhere
{1.1) for some admissible control represent the trajectories. The asymptotic properties of
optimal trajectories are investigated as T — oo,

2, Infinite optimal trajectories. The admissible control °(f), L, Kt < T and any
of its respective trajectories 2°(t), t, < 1 T are called optimal, if for any other admissible
control u {f) and any corresponding trajectory z({f), ¢, <t T that satifies the boundary
conditions 2 (f) = 2° (g}, 2 (T) = 2°(T), the inequality T (@ () ul{) to D) 2T (), ()t T)
is satisfied. The principle of optimality consists in the fact that any part (arc) z°(), t, <
Lt <E T of the optimal trajectory «° (1) is itself an optimal trajectory.

Definition. An admissible control u°({f) and some corresponding trajectory z°{!) defined
on the set J from R of one of the following types: —o < t<Co0; =0 JILh aIC Y
a<t<oo are called optimal, if for any segment {§,, §,J(C J the contractions z°(f), u°(f) on
b, <t < ¥ are the optimal trajectories and control. We call the optimal trajectory z°({f), «—oo <
t< oo ar. infinite optimal trajectory (IOT). /2, 4/.

3. Passing to the limit over successions of trajectories. we use the follow-
ing notation:
g*=(q) gnr) = R™"
Grir)={gg=flr.u) gz Fl,uhue U}

Theorem 3.1. For z& X suppose the set G* (2} is convex and the succession of trajec-
tories ¥ (1), —t0 < a 1 b << o0, k> oo corresponding to some admissible uf (/) is uniformly
convergent to z(t) on la, b]. Then =z (t) is the trajectory that corresponds to some admissible
control u {l), e <t b that satisfies the inequality

T{z () u{), a By << him 7 (2" () u® () 0. 8) (3.1}

Ko

The proof is carried out using the scheme given in /14/ pp.95-104.

We denote by 4 (g,7),e >0 the set of pcints in X reached from z &€ X in exactly the
time &. Correspendingly, A (— g 2)C X is the set of points from which z is reached in a time

[ We say that system (1.1} is positively (negatively) locally contrcllable along the

trajectory z(l), a<{t<b when t=1*=(a b), if an €, > can be found for which when 0 <
€< &, the inclusion z(t* +¢)e& Intd (e. z(t*)) helds, (respectively r{t* —¢g) = Int 4 (~ ¢,
x (t*))). We say that the system is contrcllable in the limit on an infinite trejectcry z (1),

—oo < { < o0, if successions ' — —o0.1,"—> 00 as k— o are fcund such that the system is
negatively locally contrcllakle on z(-) when t =1, , and positively locally controllable along
z () when t=¢" k> 1.

From (3.1} ané the limit contrellability we obtain.

Theorem 3.2. Let the set G* {(z) be convex whernn < X , and the continuous function
z(t)= X, —oo <<t @ be on each segment a1 b is a uniform limit of some succession of
cptimal trajectcries, dependent on la. b) . Then =z (t) is a trajectory. If the system (1.1)
is additionally contrecllable on =z (-). then x(.} is an IOT.

4. The rearrangement operator 11 /2, 4/. wWe denote for the compactum D C X the
topological space C(R, D) of all continuous mappings R — D with topology of uniform con-
vergence on compacta. For the subset W' C (R. D) we define the rearrangement operator
II (W)YC C (A, D) transforming the subsets from C (R, D) into subsets from C (R, D) according
to the formulae

NW)=8W, SW= U U ¢() ;{)=0t+71)
o()EW 1€R
and the closure is taken in C (R, D). i.e, the operator Il converts W’ intc the subset from
C (R, D) obtained by the closure of all possible displacement @,{-) of all mappings from W’
The properties of the rearrangement operator can be verified directly.

Theorem 4.1. let W', W"C C(R. D). Then S (W') =T (W) W I W) IOW) =TI WY
W) MW" =0 U WYy I (W A W)c )N
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Consider some subset V' (C C (R. D) invariant under the rearrangement cperator Il (V) =T,
and introduce on V a new topology, assuming to be closed those and only those subsets 17 (T ‘
that [T (1"} = V’. We denote the topological space obtained by V,. It follows from Theorem 4.1
that Il is an operator of closure. Then by virtue of the Kuratows‘ki theorem /15/ we obtain
that the sets invariant relative to the operator Il can be investigated using topological
means.

Corollary 4.1. The topology of the space V, is correctly defined.

Let W' C (R, D) be some set of I0T. We say that the optimality is invariant under the
action of Il on W’ when II{1") consists of IOT. We denote by Wpthe set of all IOT lying
in D, From Thecrem 3.2 we cobtain the sufficient conditions of invariance of optimality
relative to I

Corollary 4.2. Let the set G* (x) be convex, and when z&D the system is controllable
in the limit on any trajectory z ()= D. —oo < t< ® lying in the compactum D. Then for any
non-empty set of I0T W' ( C (R, D), W s (. the optimality is invariant under the action of
I on W. If in addition Wpst 7. then Il (Wp) = Wp.

5. The set of main trajectories. For the compactum D C X the set Wp ' Wi,
which is non-empty and satisfies three conditions:

1) of approximation: H{¢ {(:)) MU % & when ¢ ()& Wp,

2) of closure II (W) HD

3) of minimality: Wp° does not contain a proper subset that does satisfy the conditions
cf approximation and closure, will be called the set of main trajectories for Wp. The correct-
ness of this definition is confirmed by the following theorem,

Theorem 5.1. Let the optimality Wp s [ be invariant under the action of II of W,,
Then 1 (W) = 1. the set of main trajectories Wp® for W exists and is unique.

Proof. Consider the set @ of all subsets g = W' C W, that satisfy the conditions of
approximation and closure. Then W, e ®, and it can be shown that the intersection of a
finite number of subsets from & is, again, an element of ¢, i.e. @ has the property cf finite
intersection /15/. The eguipotential continuity trajectories in the compactum D, and the
invariance I (Wp)= W, implies, by Ascoli's theorem the compactness of W, From this 7 W =
oW ed and it is sufficient to set W l= [ W' W ad

If X is a compactum, we use the notation W = Wy W* = W;° and simply call W° the set
of main trajectories.

Theorem 5.2. Llet X be a compactun, an; let G* (2 be convex for & X, for any I >0
a trajecteory of duration T, can be fcund and the systen is, in the limit, contrellable on
any trajectory r{f)= X, —oe < 1< oc. "“'e“ the set W of 10T is non-empty: Wt 7 and the
th:ma-lty of trajectorieg ig invariant tc the action of Il on Wi Il (W)= W. The gset W~

of main trajectories exists and is unigue.

Froof. The availability cf trajectories of any duraticn ensures the presence of minimiz-
ing successions defined on any time intervals. Hence, by virtue of Thecrem 3.1 optimal
trajectcries of arbitrary duration alsco exist. UsingAsccli's theorem for selecting a succession
of optimal trajectories definedon asystem of intervals which extends without limit and
uniformly on compacta, converging to some curve z(f)e X, —oo <t < o0, Wwe cbtain by Theorem 3.2.
that z{)e W. whence W= . The remairing stztements follow from Corollary 4.2 and Thecren
5.1.

6. The chain of approximations, we say that the set of optimal trajectories from
D is closed in the topoloyy of uniform convergence on compacta from (--oc, oo}, if it follows
from that r () is an IOT and the vecter function z ()& D, —oo <t<C oo in each segment [a, b]
is the uniforr limit cf some succession of optimal trajectcries defined in [e. bl dependenton
{a, ). Theorem 3.2 provides the sufficient conditions of such closure,

Corollary 6.1. Let the set G* {z) be convex when z < X, and system {1.1) be controllable
at the limit on any trajectory z{f)j= D, — oo < t<{ o from the compactum D. Then the set of
optimal trajectories from D is closed in the topolegy of uniform convergence on compacta from
(_mv w)- . . .

We denote by Wp (f;.1,) the set of all optimal trajectories z ()& D, t, {1 ¢, and by
Wp {ty. 6y. 0, 1,) the set of trajectory contractions from Wp (i t;) on [8,. 8,] C Iy, 1,].

Theorem 6.1. isee /2/ p.61). Let Wpst J7; the set of optimal trajectories from D is
closed in the topology of uniform convergence on compacta from (—cc o). Then for any

6,< 8, and &>0 we can indicate T; and T, such that when §; {7, L, > T, for any L=
Wp (1, 8,, 6,. .2) we can find an IOT ¢ ()& Wp such that {[2° {t) — ¢ (Dii<<e for Lt <t <<
6, < 1,

Taking intc account that from the closure of the set of optimal trajectories from D their



407

follows the invariance of the optimality relative to the action II on Wp, from the condition
of approximation in the definition of the set of main trajectories the characteristic of
approximation properties of the main trajectories can be similarly obtained.

Theorem 6.2. let Wps= {7 and the set of optimal trajectories from D be closed in the
topology of uniform convergence on compacta from (—oo, o0}, Then for any T >0 and £>0 an
M = M (T,e) can be found that satisfies the following condition: for any optimal trajectory
Me D 0Kt M amain trajectory ¢ (-) = Wp® and ¢, are found such that [t, t; + T1C [0,
Ml and |22 —g (i<t for eIty 4, + TL

Theorems 6.1 and 6.2 show that the sets of Wpand Wp® constitute a chain of approximations:
IOT approximate optimal trajectories of finite duration, while the main trajectories reflect
the symmetric properties of IOT.

7. Averaging of the functional along the optimal trajectory. 1let us consider
now the problems of characterizing IOT and main trajectories, using the problem of optimization
with the functional averaged along the trajectory. Let u,(f) be the optimal control and
o (1), ta, Kt <<ty + T some optimal trajectory corresponding te it. Then the minimum I(z4 ("),
ug (), fg. 1o - T) = min / is reached for it in conformity with the definition of an optimal
trajectory. The averaged functional is then also minimal

41 (2o (- u(-): to, to+ T)=minp-7

because T is a given constant. However our aim is not the investigation of one optimization
problem for any fixed T, but a complete set of such problems differing by the time T of the
process and, also, the clarification of the behaviour cf optimal trajectories as 7 -- oc. Hence
letting 7 -» oo, we obtain the averaged problem of minimizing the limit

tpnT

Jim —+ S' F(z(t), u(t))dt — min 34)

on some set of admissible controls and trajectories on [{,. t,+ F)l. By the same token we take
v {l), 7(), {{ <t<<oo, the limit (7.1) is calculated as T — oo, and then the minimum of that
limit is sought on the set of admissible controls and trajectories on [i,, o).

However, this is insufficient for the statement of the problem of optimal contrcl with
a functional averaged along the trajectory tc be correct and tc be a useful method ¢f investiga-
tion. First, the limit (7.1) does not exist for any controls and trajectories, hence the
questicn of its existence must be separately considered. Second, the solution of problem (7.1)
muet definitely indicate the trajectory cn which that minimum is reached. At the same time
one and the same value of limit (7.1) as T -—oo. if it exists, corresponds to trajectories and
controls in an infinite time interval differing only in some finite time interval, Hence the
criterien of optimality (7.1), where a minimum is sought on a fairly wide set of trajectories
and controls @ defines not a single trajectory, but a whole set of trajectories and controls
for which a minimum is attained. To avoid such ambiguity cne has to narrow the set of pairs
@ on which the minimum (7.1} is scught, Such narrowing may lead tc the existence of the
limit (7.1) (e.g., if we take Q= Q. where Q, is the set of admissible periodic mecdes). Third,
the averaged problem (7.1) must have a solution. For instance, by narrowing Q tc periodic
modes Q= Q. we obtain the problerm cf periodic optimization (PO} whose sclution (optimum cycle),
if it exists, is uniquely determined, except the special cases of cptimal cycle non-unigueness.
However, the minimum of (7.1) may not be reached. Simultaneously the widening of modes of ©
to the almest periodic modes Q= Q,, /4/ may ensure the existence of a solutiorn. This shows
the value of widening Q@ tc the set cof almost periodic modes.

8. The standard large variation of the trajectory. we say that the system (1.1)
is uniformly controllable on compacta D X, if and only if, there exists a compactum K T X
and a number M >0 such that for any twe points =z, ay = D & trajectory z =K, o0t g
M, r(0) = 2o, (M) =2y carn be found,

Consider two trajectories 7, (). x (S D.a<t b, b —a>»2M of which z,(-) is optimal.
We construct the trajectories ()& K, e IiCa+ M, @ =z@).5,(a+ M =z(@a+ M),z,{t)c
Kob—= Mt h 29—~ M) =z(b— M), 7, (b) =z, (b). and determine the larger variation y (1),
et b of the trajectery z,(+) by formulae y(t) = x, (f) when a1t La+M; y@)==z() when
a+ Mt Kb~ M, and y(t) = 7, (t) when b — M <t b, From the compactness of A X I’ and
the continuity of F(z,u) it follows that for some AN = N (D) the inequalities

Iz () aa+MYKAN, Tir, (), b=~ M, MiKN
[T () ae,a+M)|IN |T@E()b=—M, My N
hold.
By virtue of the optimality I (zo(-). a, &) <7 (y (+), a, b), whence we obtain the basic inequality
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for the standard large variation

T(ze () 6, YAN + T (2 ("), a, }) (8.1)

Let us fix ©>>0. Let there be some seguence T ~ 00, T, > ©, k—+ o0, and functions g {1},
L R that are Lebesgue summable. We shall consider the integrals

. "+Tk 9k+ﬂ
o= 5 ad BO)== | aa
. ek

Using the Lebesgue integral, we obtain the following statement.

Lemma 8.1. Let |g ()< M, when k>1, — o<t< oo for some M, Then 0, can be
selected to satisfy the condition By (8;) — ax— 0, (8, 8, + @l C [te £y + 7] 85 k= co.

.9. Thg existence of a unique limit for the functional averaged over optimal
trajectories. For brevity, we shall write I (z (), a, b) instead of [ {(z (), u (), a, b).

Theorem 9.1. Let system (1.1) be uniformly controllable on the compactum D C X, and
for any T >0 suppose the set Wp (7] of optimal trajectories of duration T lying entirely
in D is non-empty. Then the limit

Jim —+1(zr (-}, 0, T)=Co=Co(D) (9.1)

exists and is independent of the selection of zr (-) & Wp (I).

Procf. Assuming that the theorem is false, we find sequences zq ()& Wyin) and zm(e
Wpn{Ty) that satisfy the ineguality

T
'[;. ”i
; 4 )
O = lim e § F (euy (9 v, () <C7 = tim = § F oo ®. upy, 12 9.2
Kesoe Ty J mos TmoQ
where zox (-}, 2om (-) Correspond to ue (-4 um (+), while 7, Ty~ for kmee. We £ix m>1 such

that T, >2M and put w=T,. According to Lemma 8.1 8. x, can be found such that

1
zﬁk(ek>—ak;<-m— for kx>k,. gk(t)-:F(:w(r)‘ Uy, (1)) (8.3

By an appropriate selecticn of the reference point on trajectories zx (4), we can obtain

8 = 0(then the trajectories themselves are defined for —B €t €1~ 6, and % — 6, > I We
construct a standard large variation of trajectories, taking z,, (i) as zy{t), and setting a=
O, b= Tp. Then, by virtue cf (£.1; we cbtain

T (2 1 O T AN I {25 (0, 0, 7))
which implies
Tz, 00 00 T YT (2, (), 00 7 ) THA
and from (9.3), taking into account 6, = 0, we cbtain
JT ag 00 00 T YV =5 (2, (), O 1) 4Ky Rk,
It follows from the last twc inequalities that
T (g, (0 0 TSt (50, () O, B} + T4V bm, knk,
By letting m— e here we obtain ("< (', which contradicts (9.2).

By the problem of average-optimal contrcl, with the functional averaged along the trajec-
tory, we mean the problem of minimizing

T
lim - { F(2(8), u (¢)) d¢ — min (9:4)
T o
[
on some set { of admissible controls and trajectories defined for — o <! <C oo. That the

lower limit of integration in (9.4) is zero, is immaterial by virtue of Theorem 9.1. Moreover,
Theorem 9.1 implies that for any IOT lying in the compactum D on which the system is uniformly
controllable, the limit (9.4) exists and is equal to C, i.e. is independent of the choice
of the IQT.

We denote by ,P the set of all periodic modes =z {f), u{f} of system (1.1} such that the
cycle z{-) intersects the set D. The method used for Theorem 9.1 enables us to prove the

following theorem.

Theorem 9.2. Let system (1.1) be uniformly controllable on the compactum D C X; Wp (T) =+
(3 when T >>0. Then the guantity C,;defined in Theorem 9.1 satisfies the equation



408

T
1
inf lim F(z(t) u(t)dt=C,
(), v, D T= T §

and, in particular, if D =X, then all periodic modes appear as £,°.

This eqguation justifies the part played by the problem of periodic optimization as the
problem of averaging. It shows that using the periodic mode it is possible to approximate by
the averaged functional any optimal process of infinite duration = oo <{? < o, with a specified
accuracy. If one considers that the problem of periodic optimization, which is the simplest
of problems of optimal control with a functional averaged along the trajectory, which has
such property, and that periodic modes are the simplest to obtain in practice, their part in
the main asymptotic mode becomes clear /2—4, 13/.

10. The problem of periodic and almost~-periodic optimization (PO and APQ)
as special cases of problems of average-optimal control. The problem of PO may
be presented in three forms., The first form: determine the periodic trajectory from the set
W of I0T. The second form: find the admissible periodic mode

T

inf  lim o S Fz(t), u(t) dt (10.1)
=0, u0)E0, T-= 1 ¢

the exact lower limit for which would be reached, and the third form; to minimize the functional

1
_1..3 F(z(t), u(t)dt— min (10.2)
°

ul{-}. x{-}, ¥

under conditions of pericdicity z (1) =z (0), where 7 >0 is not specified.

Theorem 10.1. Let X be a compactum and let the system (1.1) be uniformly controllable
on X. The three statements of the problem of PO are eguivalent.

Proof. Implication 1-2 If =2() is a periodic trajectory from W, then according to
Theorem 3.1 the precise lower limit (10.1) is achieved on z{.), as well as on any IOT.
Implication 2-3. If z2{(f), ul)y, —ee <t <o are periodic functions and minimize (10.1), then
according to Theorem 9.2 that minimum is equal to ¢, Let 1 be the period of the process., We
set T =k and obtain

1 kT
-%SF(:(I), u(t))dt:%[— SF(:(!), u{l))dt—Cy, as k— oo
0 [

From this it follows that the mean value of the functiocnal over the period for z{), u{)
is equal to C, which according tc Theorem 9.2 is the exact lower bound of (10.2). The implica~
tion 38-1 was proved earlier (/2/, p.l03).

Consider two forms of the statement of the problem of PPO, The first form defines the
almost periodic IOT. The second form: to minimize the averaged functicnal (9.4) on the set
of almost periodic trajectories for which the limit (9.4) exists when 7 —» oc. Nc supplementary
assumptions are made relative to the controls, except about measurability. If X is a compactun
and the system is uniformly controllable on X, then by virtue of Theorem 9.1 it follows from
the fact that z (-} is the sclution of the problem of PPO in the first statement, if follows that =z (-)
is the sclution of the problemof PPO in the second formalso.

11, The problem of PPO for a linear system with a quadratic functional.
Assuming for the characteristic roots }; of the matrix 4 = Rnn

Reldy <0, 1 i (11,1}

we shall consider the linear system of control
L Az~ Bu, 1= R, uc=R
w=4r+Bu, z= R, us (11.2)

We denote by L,® the set of periodic vector functions u ()& R™ with all possible periods
that are summable together with the scalar product of (u{t), u(f)) on any compactum from {—oc,
o). According to (11.1) a single periodic trajectory (11.2) corresponds to each function
u(-)= L,*. We denote by ,® the set of periodic pairs =z (), u (-} L,%, and by £, the subset
of Q. consisting of sinusoidal or constant functions, i.e, if ()}, u{) =, then all
components z (1), u (f) are sinusoidal of equal frequencies, or constant.

Consider the sinusoidal control u, (f) = [u, sin (ot + ). . ., u, sin (0t + §,)}*as w — co. Then
the sinusoidal trajectory which corresponds to it converges uniformly =z, (1) — 0 with respect
to t in accordance with (11.1). Hence it is possible to give meaning to the consideration
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of the pair iz« (), ux (-) of sinusoidal trajectories and controls of infinite frequency, assuming
7 (=0, and as ux () considering uy (1) as w-»> oo. We denote the set of these pairs of
infinite frequency by Qu-«.

We now have the problem of maximizing the averaged functional

T
Pzrlirg-%-g[(z, Dz) + (u, Gu)]dt — max (11.3)
0

without any assumptions as to the matrices D and G. Hence the maximization can be replaced
by minimization. The parentheses (., -) denote here a scalar product. As the set of pairs
of Q on which we seek (11.3), we take the subset of all pairs composed from the sums

u(t)=Jui(ey z(t)=2 2 (th v () 7' ()ES W Qumw (11.4)
=0 (™)
that satisfy the averaged limit on the control on each entry for given a

T
lim -;-Sukz(z)dt<“7"'v 1<k (11.5)

T o r4

12, Contraction of the set of admissible pairs. we contract (11.4) to

r—1 -1 )
u(t)= 2 u'(t), z(t)= D7) v () ()= J Qu=x- {(12.1)
=0 i=0
Theorem 12.1. The exact upper limits (11.3) in problems (11.1)~(11.5) and (11.l;, {il1.2),

(11.5) ané (1.2.1) are the same.

Prcof. Cecnsider the control
U.e N—1
uy {t, N)= T’%-‘-Z Ukisin(wir +¥,) 1<k ;%o when [ (12.2;
2 —

tc which corresponds the stable solution (11.2) of the form

N1 X0
Y i [ — P2 : .
xp(t, \)_Zzp, z 0= ]/.2 A _Xp sm(mit—rq‘“), i<pgn (12.3)
=0
It is assumed that wy_, = . Then X;‘"’ =0 fcr 1<p<n

Substitution of (12.2! inte (11.3) yields

N-1 N
<yl 1<k (12.4
i=0
We put
i i i i 1 - i
[U'F = ol (R, .. (U1, B = 3 () (12.5)
k=1

T
; 1 i i i i
pi=1im 7 {0 D@t @, 6 e
x T e H

Then because o, % w; for i=j we have fcr (12.2) and (12.3) the optimal criterion (11.3)
in the form

N=-1
Piz( Ny u(, My =3 P (12.6)
1m0

Considering the relaticne (12.4) ané (12.5), tc prove the theorem it is sufficient toc show
that instead cf (12.2), it is possikle to select a control of the form

0° v
u (8, r)=——"-§—+ZC,,‘.inwir+xp“). 1<k (12.7)
V q==)
w;% o, when iz%j, P“°Pu'=0
(i.e. where [U°?=0 or |[U'}=0) such that for =z(t r) that corresponds to (12.7), the in-
eguality
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N1 r .
P N u(, MSPEC D ul ) S Wp= 3 1'p (12.8)
{=0 =~
is correct since the functions u{)e L,® can be expanded in a Fourier series, and condition
(12.8) implies the possibility of reducing the number of harmonics, including the constant, to

the number of inputs of system (11.2) without violating constraints and without diminishing
the criterion (11.3).

The vectors [UR, 0K i< N —1 are linearly independent for N >r. Hence we can find
simultaneously non-zero f;, ... By, such that

BolU' S +... + By (UP=0 (12.9)

It suffices to prove that for N >»r we can pass from N harmonics to N —1 so as to have

P(( Ny uls MKPE(, N=1), u(-, N=1)) *(12.10)
N-1 Ne-2

3 wip= 3 (0

=0 nel)

Then inequality (12.8) may be obtained from (12.10) by induction.

If [V =0, inequality (12.10) is proved. We assume that [U' =0 when O6<{< N ~—1{. Then
by virtue of (12.9) among §; we have positive and negative quantities. To be specific we
assume fo.. .« By 20, Byyye e - Byy < 0. Adding r scalar eguations (12.9), we obtain BoPu® + ... 4

By PY¥-3= 0. Let us calculate two coefficients
. BoP,o ...+ B.PY
PR+ BPLY
o o TR P 4 (= By P
ST =Py PN (= By P

and assume to be specific that & <k We select P=maxp; from 0<;<<v. Assuming that f=8§,

%‘-Pu°+pux+—gfpuz+.,.+£ip V= (—%—’—) Pt 4 (_3%5:) p N1

Using the formulae

ci_ /1 _p“l_l'k". 0KIKN—1, 1<k
Ol Ak

we change the amplitudes c¢f the harmonics u. Then

p;‘:{z‘-g-f-\) Pl Bi= (ii.-»«ii-:l P {01 =0
i.e. the number of harmonics is reduced by one and
N-lma E(Q Ei—) U, lp NZ_IU"z RN} - in T v ip
;;t p=d g )wr= 2 kl-—ﬁg’ﬁiw;‘}=§{ R

From the ineguality k <k, taking intc account the eguality of the denominators in Kk, &
we obtain

BoP o+ ... b PP Y e By PE e — By, PO

Then the following criterion correspcnds to the new control amplitudes:

N-1 N-3

: ! : :
Pr{ @ (q;:Z}Sx‘z E g\i—%"-)}’x‘=mz(., ANy, ut, Ny —

i=0 i=p
; N—y
=X s srec, moue
“T=0
which is identical with (12.10) apart from the numbering of the harmonics.
The averaged functional (11.3) of the form

I=IU%.., U, ..o 0 Y15 -« §,)— min {12.11)
Ulmeol [U'y .0 U] s=col [{qr ..o %3]

corresponds to contrcl in the form of the sum of harmonics (12.7), Here U =0 or U =0,
i.e. the over-all number of harmenics, including the constant component, does not exceed r,
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and the constraints (11.5) have the form

r
SO <t 1<E<r (12.12
According to (12.12) and (12.7) the regions of variation of Lﬁ,wi are compact. All
values from O to oo are admissible for ;. Hence condition (l1.l1l) enables us to state the
following theorem.

Theorem 12.2. The problem of non-linear programming (12.11), (12.12) has a solution which
determines the solution of problem (11.2), (11.3), (11.5), (12.1) in the form (12,7), (l12.1).

Corollary 12.1. The problem (11.1)—(11.5) has a solution that is provided by the
solution of problem (12,11), (12.12) in the form (12.7), (12.1).

This shows that when the number of inputs r 2> 2 and the frequencies @;,. . ., 0, obtained in the
solution of problem (12.11), (12.12) are incommensurable, the solution is obtained in the
class of almost periodic functions.

. Remark. Problem (11.1)—(11.5) may be treated as one of maximum
L power transmission to the load with power constraint on each input.

Besides it is seen that the Theorems 12,1, 12,2 and Corollary 12.1
e(t) R hold alsc when functional (11.3) is replaced by the functional

T
[}
Fig.l P = lim 1TS [(z, Dz) + (z, Lu) + (u, Gu)] dt — max

T—e

where L is the matrix n»n.> r

Example. Consider the problem of supplying maximum power to the resistance R in the
electric circuit shown in Fig.1l, with

10,
. P= lim —T—\ﬂR dt -~ max

Tvex o

and a constraint on the control provided by the electromotive force (1)

i
lim —T—Se'-’(t)d!\(—r, >0
1]

T—ex

we denote the vcltage across the capacitor by =z, the current by i, the capacitance by C,
and we obtain Kirchhceff's second law z-+ iR =e¢ For the capacitance we have

dr 1
ar = 7T ¢

from which follows the differential egquaticn

—Z;— = (e — ) (RC)?

According to Corollary 12.1 the solution is provided by a single harmonic e= asinwf, from
which i=a (R?+ 1/ (00 *sin (vt -+ ¢). It is seen that the maximum of P = o¥(2R) is reached when
@ = o0. This corresponds to the fact that the maximum transmission of power to the load, for
the chain considered here, corresponds to frequencies as high as desired. Mathematically, this
means that e()= asinowt is considered as the solution when e — . The same problem for a
chain differing from the one in Fig.l by the addition of an inductance L has a solution e(1) =
asin of, @ = (L€)' with the same maximum power.
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A GAME OF OPTIMAL PURSUIT OF ONE NON-INERTIAL OBJECT BY
TWO INERTIAL OBJECTS’

A.YU. LEVCHENKOV and A.G. PASHKOV

A game in which one controlled object is pursued by two others is studied.
The pursuing objects are inertial, and the pursued object is not. The
duration of the game is fixed. The payoff functional is the distance
between the pursued cbject and the closest pursuer at the instant when
the game ends. An algorithm for determining the pavoff function for all
possible positions is constructed. It is shown that the game space
consists of several domains in which the payoff is expressed analytically,
or is determined by solving a certain non-linear equation. Strategies of
the pursuers which guarantees them a result as close to the game payoff
as desired are indicated.

The optimal solution of a game of pursuit when one inertial object
pursues a non-inertial one was cbtained earlier in /1/. The present
paper is related to the investigations reported in /1-10/.

1. Let the moticns of the pursuers P, (z')(i=1,2) and of the pursued object E (z) be
described by the eguations

=1, zi=ut, ntead zii=ul ni=u. = {1.1)
The control vectors of the pursuers and the pursued satisfy the constraints
(') + P Ku >0, @F + 0t < (1.2)
The game is studied over the time interval |4, 9). The paycff functicnal is the distance
between the pursued object and the nearest pursuer at the instant { =& that the game ends,
e ¥ = min; [(21 (8) — 23° (8)7 = (22 (8) — 22’ ()] (1.3)

As a result of the change of variablesy =z + (& -1, {(f=1.2),which means passing
to considering the centres of regions of attainability of the inertial cbjects, relations
(1.1)—=1(1.3) take the form

¥ =0 —ui yi (t0) =1z (t) + (8 — to) 2}, (t0) (1.9
= min; [{z1(8) — g1 ()] = (22 (8) — y' (9] (1.5)

At the instant ¢ =% the values of y found from (1.3) and (1.5) are identically equal.

We denote the centres of the attainability regions by P,. For the positions where P,° = P,
the payoff of the two-to-one game, denoted by p?, is identical with the payoff of the one-
to-one game denoted by p'’. Henceforth we consider those initial positions for which P = P,
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